THE COMPLETE ASSIGNMENT OF THE ¹³C AND ¹H NMR SPECTRA OF JADIFFINE

J. GARNIER,* J. MAHUTEAU,† M. PLAT† and C. MERIENNE‡

*Laboratoire de Biologie Végétale, Faculté Pharmacie de Rouen, 76800 Saint Etienne du Rouvray. France; †Laboratoire de Pharmacie Chimique II (UA 496), Faculté de Pharmacie, 92296 Châtenay-Malabry, Cedex, France; †Service de RMN, Université Paris-Sud, 91405 Orsay, France

(Received 29 February 1988)

Key Word Index—*Vinca difformis*; Apocynaceae; jadiffine; alkaloid; ¹H homonuclear correlation; ¹³C-¹H chemical shift correlation.

Abstract—The structure of jadiffine, a new alkaloid of *Vinca difformis* was elucidated by means of two dimensional NMR experiments: COSY, COSY long range and heteronuclear ¹H-¹³C chemical shift correlation.

INTRODUCTION

This paper reports the determination of the structure of jadiffine (1). Jadiffine is a new alkaloid isolated from Vinca difformis. The MS of 1 shows a molecular peak at m/z 324 corresponding to a formula $C_{22}H_{24}N_2O_2$. The UV spectrum shows an indolic chromophore. A two-dimensional NMR study was undertaken to provide unambiguous ¹H and ¹³C assignments. Moreover the ¹H coupling constants were estimated from a one-dimensional spectrum after identification of the patterns by the COSY technique.

RESULTS AND DISCUSSION

The ¹H and ¹³C NMR spectra of jadiffine (1) and of *O*-acetyl jadiffine show the presence of ketonic and primary alcoholic functions, an ethyl side chain, a *N*-methyl group and free indolic NH. Two dimensional NMR studies: homonuclear COSY and COSY LR, heteronuclear 13 C- 1 H chemical shift correlation had allowed the structural determination of this alkaloid of macroline type structure [1]. For jadiffine the chemical shifts of C₃, C₁₄ and C₂₀ are very similar to those of villalstonine [2], macralstonidine [2] and pandicine [3]. However due to substitution on C₆, C₂₁ is slightly deshielded.

In the ¹H NMR spectrum of 1 the chemical shift of H_3 (4.05 ppm) appears very close to that of the corresponding proton of pandicine and talcarpine [3] respectively 4.01 and 3.98 ppm. The C_6 and C_{16} signals appear at 48.0 and 50.8 ppm respectively. Those low shift values indicate the presence of an alpha keto group on C_5 . COSY and irradiation experiments allow the assignment of H_{16} , H_{17} and H_{20} , H_{19} and H_{18} . The low coupling constants between H_{20} and H_{21} , H_{15} and H_{16} indicate the stereochemistry 16R,20S. The coupling constant between H_{15} and H_{20} is lower than 1 Hz. A long distance COSY experiment displays a correlation between H_{21} (3.45 ppm) and H_{15} (1.65 ppm). The above experimental data are in complete agreement with the geometry ob-

Table 1. ¹H and ¹³C chemical shifts (ppm) ¹H-¹H coupling constants (Hz) for jadiffine, 1.

	$^{1}\mathrm{H}$		¹³ C
Position	δ	J	δ
2			135.9
3	4.05	$J_{3-14a} = 6$ $J_{3-14b} \simeq 1$	54.5
N-Me	2	3-146	43.2
5			215
6	4.25	J_{6-2} , = 9	48.0
7		0 21	104.6
8			126.3
9	7.47	$J_{9-10} = 7$	118.3
10	7.07	$J_{10-11} = 7$	120.6
11	7.12	$J_{10-12} = 2$	122.2
11 12	7.13 7.30	$J_{9-11}=2$	122.2
12	7.30		111.5
13 N-H	8.02		135.9
14	$14_a = 2.60$	I 12	32.3
14	$14_a = 2.60$ $14_b = 1.77$	$J_{14a-14b} = 12 J_{14a-15} \simeq 1$	32.3
		$J_{14b-15} \simeq 1$	
15	1.65	$J_{15-16} \simeq 1$	34.5
16	2.50	$J_{15-20} \simeq 1 J_{16-17a} = 4$	50.8
	2.00	$J_{16-17b} = 9$	30.0
17	17a = 3.33 17b = 3.65	$J_{17a-17b} = 9$	64.3
18	0.95	$J_{18-19} = 7$	12.2
19	19a = 1.60	$J_{18-19} = I$ $J_{198-19h} = 12$	23.5
	19a = 1.00 19b = 1.90	J 19a−19b == 12	43.3
20	1.43	$J_{20-21} \cong 1$	43.6
21	3.50	- 20-21 •	59.2

^{*}Author to whom correspondence should be addressed.

served on molecular models: dihedral angles between H_{15} – H_{16} , H_{20} – H_{21} and H_{15} – H_{20} are close to 90°, H_{21} and H_{15} are in a W disposition.

^{*}The values of the chemical shifts of C_9 to C_{12} are similar to values of literature [6].

Short Reports

Jadiffine 1

The heteronuclear ¹H-¹³C chemical shift inverse correlated experiment [4] allows the complete assignment of carbons (Table 1).

EXPERIMENTAL

Jadiffine was isolated from *Vinca difformis* Pourr. (Apocynaceae) according to the operating process previously reported [5, 6]. It was purified by prep. CC (silica G, Merck) with CH₂Cl₂-MeOH (93/7). ¹H spectra of 1 was recorded on a Bruker AM 250 NMR spectrometer. Proton chemical shifts are given with reference to TMS as internal standard.

Homonuclear ${}^{1}H$ - ${}^{1}H$ shift-correlated two-dimensional diagram was obtained using the COSY-45 pulse sequence (D_1 , 90°, t_1 , 45°, acquisition). Parameters are as follows: spectral widths

 F_2 =2500 Hz, F_1 =1250 Hz, data matrix for processing: 1024 $(f_2) \times 512$ (f_1) , relaxation delay 0 sec, number of scans 32, increments of t_1 : 256. The COSY LR sequence $(D_1, 90^\circ, t_1, D_2, 45^\circ, D_2$, acquisition) was used to favour cross-peaks relating weak protons signals and D_2 was set to 0.08 sec. The heteronuclear two-dimensional $^1H_-^{13}C$ shift inverse correlated spectrum was recorded on a Bruker AM 400 spectrometer (program Birdrev Au). Parameters are as follows: spectral widths 8560 Hz (C13 axis) 3400 Hz (H, axis); data matrix for processing 4096 \times 512; relaxation delay: 0 sec. number of scans: 16; increments of t_1 : 64.

Acknowledgements—We thank Bruker Co. for recording the ${}^{1}\mathrm{H}{}^{-1}\mathrm{}^{3}\mathrm{C}$ correlated spectrum.

REFERENCES

- Naranjo, J., Pinar, M., Hesse, M. and Schmid, H. (1972) Helv. Chim. Acta 55, 752.
- Das, B. C., Cosson, J. P., Lukacs, G. and Potier, P. (1974) Tetrahedron Letters 4299.
- Kan-Fan, C., Massiot, G., Das. B. C. and Potier, P. (1981) J. Org. Chem. 46, 1481.
- 4. Bax, A. and Subramanian, S. (1986) J. Magn. Reson. 67, 565.
- Gosset, J., Le Men, J. and Janot, M.-M. (1962) Ann. Pharm. Fr. 20. 448.
- 6. Garnier, J. and Mahuteau, J. (1986) Planta Med. 66.